Definition of the limit of a function

Let

 $f: D \rightarrow \mathbb{R}$ be a function defined on a subset $D \subseteq \mathbb{R}$

$$D = \{x | 0 < |x-c| < \delta\} \Rightarrow \{x | c - \delta < x < c + \delta\}$$

L be a real number. Then the statement

$$\forall \epsilon > 0$$
 , $\exists \delta > 0$:

$$\forall x | (0 < |x - c| < \delta \Rightarrow |f(x) - L| < \epsilon)$$

is abbreviated to

$$\lim_{x\to c} f(x) = L$$

Less formally, "For all $\epsilon > 0$ there exists some $\delta > 0$ such that <u>for all x</u> that satisfies $0 < |x-c| < \delta$, the inequality $|f(x)-L| < \epsilon$ holds. Or less formally, "For all $\epsilon < 0$ there exists some $\delta > 0$ such that

a.
$$0 < |x - c| < \delta$$

b. $|f(x)-L|<\epsilon$ for all x that satisfy a.

 \forall = "for all", e.g. \forall P(x) means P(x) is true for all x (universal quantification)

 \exists = "there exists", e.g. $\exists x : P(x)$ means there is at least one x such that P(x) is true (existential quantification)

If there does not exist any $\delta>0$ such that for all x in D that satisfy $0<|x-c|<\delta$, the inequality $|f(x)-L|<\epsilon$ holds, for all $\epsilon>0$, L is

not the limit.