The simple average of a sequence of numbers is

$$\frac{1}{n}\sum_{i=1}^{n}x_{i}$$

For example the 200 sample average of a sequence of numbers is

$$\frac{1}{200} \sum_{i=1}^{200} x_i$$

Subtracting the nth element of the average yields

$$\frac{1}{n}\sum_{i=1}^{n} x_{i} - \frac{1}{n}x_{n} = \frac{1}{n}\sum_{i=1}^{n-1} x_{i}$$

for example

$$\frac{1}{200} \sum_{i=1}^{200} x_i - \frac{1}{200} x_{200} = \frac{1}{200} \sum_{i=1}^{199} x_i$$

So, in terms of the entire sequence

$$\frac{1}{n}\sum_{i=1}^{n-1} x_i = \frac{1}{n}\sum_{i=1}^{\infty} x_i - \frac{1}{n}\sum_{i=1}^{\infty} x_{i+n-1} = a_s s_1$$

For example

$$\frac{1}{200} \sum_{i=1}^{199} x_i = \frac{1}{200} \sum_{i=1}^{\infty} x_i - \frac{1}{200} \sum_{i=1}^{\infty} x_{i+199} = a_s s_1$$

and enumerated

$$a_1 = (x_1 - x_n)/n + (x_2 - x_{n+1})/n + (x_3 - x_{n+2})/n + (x_4 - x_{n+3})/n + (x_5 - x_{n+4})/n \dots$$

For example,

$$a_1 = (x_1 - x_{200})/200 + (x_2 - x_{201})/200 + (x_3 - x_{202})/200 + (x_4 - x_{203})/200 + (x_5 - x_{204})/200...$$

The series can be expressed as a set of recursive expressions:

$$a_{1} = (x_{1} - x_{n})/n + a_{2}$$

$$a_{2} = (x_{2} - x_{n+1})/n + a_{3}$$

$$a_{3} = (x_{3} - x_{n+2})/n + a_{4}$$

$$a_{4} = (x_{4} - x_{n+3})/n + a_{5}$$

In the example:

$$a_{1} = (x_{1} - x_{200})/200 + a_{2}$$

$$a_{2} = (x_{2} - x_{201})/200 + a_{3}$$

$$a_{3} = (x_{3} - x_{202})/200 + a_{4}$$

$$a_{4} = (x_{4} - x_{203})/200 + a_{5}$$

...

These expressions are a significant simplification of the original expression for the average,

$$\frac{1}{n}\sum_{i=1}^{n}x_{i}$$

where you needed n additions and 1 division, for each average value, now only 1 subtraction, 1 addition and 1 division are required.

The error in the modified version comes from the expression above

$$\frac{1}{n}\sum_{i=1}^{n} x_{i} - \frac{1}{n}X_{n} = \frac{1}{n}\sum_{i=1}^{n-1} x_{i}$$

which is

$$\frac{1}{n}x_n$$

In other words, the error is proportional to the magnitude of the samples and inversely proportional to n.

The simple average can be extended to the *moving average* of a sequence of numbers:

$$\frac{1}{n}\sum_{i=0}^{n-1}x_{i+m}$$

Where *m* is the index of the first element of the sample. For example, the 200 sample moving average of a sequence of numbers, starting with the 6th sample, i.e. m=6, is

$$\frac{1}{200} \sum_{i=0}^{199} x_{i+m} = \frac{1}{200} \sum_{i=6}^{205} x_i$$

The analysis proceeds as with the simple average by subtracting the *nt*h element of the average

$$\frac{1}{n}\sum_{i=0}^{n-1} x_{i+m} - \frac{1}{n}x_{n-1+m} = \frac{1}{n}\sum_{i=0}^{n-2} x_{i+m}$$

for example

$$\frac{1}{200} \sum_{i=0}^{199} x_{i+6} - \frac{1}{200} x_{205} = \frac{1}{200} \sum_{i=0}^{198} x_{i+m} = \frac{1}{200} \sum_{i=6}^{204} x_i$$

So, in terms of the entire sequence

$$\frac{1}{n} \sum_{i=0}^{n-2} x_{i+m} = \frac{1}{n} \sum_{i=0}^{\infty} x_{i+m} - \frac{1}{n} \sum_{i=0}^{\infty} x_{i+m+n-1} = as_1$$

For example

$$\frac{1}{200} \sum_{i=0}^{198} x_{i+6} = \frac{1}{200} \sum_{i=0}^{\infty} x_{i+6} - \frac{1}{200} \sum_{i=0}^{\infty} x_{i+205} = as_1$$

and enumerated

$$a_{n,m} = (x_m - x_{n-1+m})/n + (x_1 + m - x_{n+m})/n + (x_2 + m - x_n + 1 + m)/n + (x_3 + m - x_n + 2 + m)/n + (x_4 + m - x_n + 3 + m)/n \dots$$

For example,

$$a_{200,6} = (x_6 - x_{205})/200 + (x_7 - x_{206})/200 + (x_8 - x_{207})/200 + (x_9 - x_{208})/200 + (x_{10} - x_{209})/200 \dots$$

The series can be expressed as a set of recursive expressions:

$$a_{n,m} = (x_m - x_{n-1+m})/n + a_{n,m+1}$$

$$a_{n,m+1} = (x_{1+m} - x_{n+m})/n + a_{n,m+2}$$

$$a_{n,m+2} = (x_{2+m} - x_{n+1+m})/n + a_{n,m+3}$$

$$a_{n,m+3} = (x_{3+m} - x_{n+2+m})/n + a_{n,m+4}$$

In the example:

$$a_{200,6} = (x_6 - x_{205})/200 + a_{200,7}$$

$$a_{200,7} = (x_7 - x_{206})/200 + a_{200,8}$$

$$a_{200,8} = (x_8 - x_{207})/200 + a_{200,9}$$

$$a_{200,9} = (x_9 - x_{208})/200 + a_{200,10}$$

The simplification of the original expression for the moving average,

$$\frac{1}{n}\sum_{i=1}^{n} x_{i+m}$$

is the same as the simple average: n additions and 1 division, for each moving average value, now only 1 subtraction, 1 addition and 1 division.

And the error, identical as in the simple average

$$\frac{1}{n}\sum_{i=0}^{n-1} x_{i+m} - \frac{1}{n}x_{n-1+m} = \frac{1}{n}\sum_{i=0}^{n-2} x_i$$

which is

$$\frac{1}{n} x_{n-1+m}$$

As with the simple average, the error is proportional to the magnitude of the last

sample and inversely proportional to n.

So if the $n-1+m_{th}$ value is 60, in for 200 samples, the error is .3 or 30%, which is considerable. However, if we divide the samples by, say, 100, so the sample is 0.60, the error is 0.3%.

((x _i -x _{i+199})/200)+as _{i+1}	SUM(x _{i:} x _{i+199})/200	%diff
2004.08455	2013.4226	0.47%
2002.8449	2012.31095	0.47%
2001.71535	2011.5698	0.49%
2001.00855	2011.1872	0.51%
2000.6404	2011.03845	0.52%
2000.54285	2011.02745	0.52%
2000.502	2011.0142	0.53%
2000.51795	2010.97565	0.52%
2000.49075	2010.9077	0.52%
2000.4132	2010.84345	0.52%
2000.39305	2010.8134	0.52%
2000.36165	2010.88255	0.53%
2000.50245	2010.8903	0.52%
2000.6488	2011.0666	0.52%
2000.8055	2011.3047	0.52%
2001.1048	2011.5714	0.52%
2001.33375	2011.82395	0.52%
2001.5879	2012.1071	0.53%
2001.774	2012.31715	0.53%
2002.0845	2012.62735	0.53%
2002.30585	2012.7721	0.52%